

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Recovery of Gold and Silver from Copper Anode Slime

Ömer Yavuz^a; Recep Ziyadanoğulları^a

^a DEPARTMENT OF CHEMISTRY, FACULTY OF ARTS AND SCIENCE, DICLE UNIVERSITY, DIYARBAKIR, TURKEY

Online publication date: 01 April 2000

To cite this Article Yavuz, Ömer and Ziyadanoğulları, Recep(2000) 'Recovery of Gold and Silver from Copper Anode Slime', *Separation Science and Technology*, 35: 1, 133 — 141

To link to this Article: DOI: 10.1081/SS-100100147

URL: <http://dx.doi.org/10.1081/SS-100100147>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Recovery of Gold and Silver from Copper Anode Slime

ÖMER YAVUZ and RECEP ZIYADANOĞULLARI*

DEPARTMENT OF CHEMISTRY
FACULTY OF ARTS AND SCIENCE
DICLE UNIVERSITY
21280 DIYARBAKIR, TURKEY

ABSTRACT

This study has shown that gold and silver can be recovered from a complex anode slime containing copper, selenium, and tellurium, but a carefully planned leaching procedure is required. To extract the gold with thiourea, it is necessary to first remove the copper, selenium, tellurium, and most of the silver from the mixture. Once these elements are removed, the gold and most of the remaining silver can be extracted in high yields by leaching with thiourea solutions. It is possible to collect the gold and silver (as well as copper, selenium, and tellurium) in separate phases where they can be purified more easily. No additional step is necessary to separate the silver and gold from each other.

INTRODUCTION

Gold and silver that occur in elemental form can be recovered from ores by density concentration, amalgamation, flotation, and pyrometallurgical, hydrometallurgical, or biochemical methods (1). Since 1880, recovery of gold and silver from ores and concentrates has been carried out hydrometallurgically by a cyanide-based method. The major problem with that approach is the high toxicity of the cyanide. Gold and silver in refractory ores such as sulfides, pyrite, arsenopyrite, and carbonaceous materials can be extracted with only

* To whom correspondence should be addressed.

low yields using these conventional methods. To apply the cyanide process to these ores, it is necessary to treat them first with a bioleaching, leaching under pressure, oxidizing acidic leach, or roasting step. The pretreatment makes recovery uneconomical.

Thiourea is a nontoxic reagent that dissolves gold and silver at rates that are actually higher than cyanide leaching rates. Thus, thiourea leaching of various gold- and silver-containing ores and concentrates such as anode slimes has been studied widely (2–8). However, thiourea leaching is sensitive to the presence of such basic metals as copper, lead, zinc, arsenic, and antimony, as well as other impurities. This paper describes an approach to avoid the interference of the other metals in treating a particular anode slime.

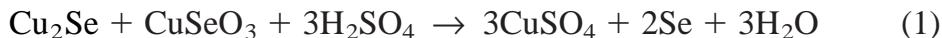
MATERIALS AND METHODS

The two different anode slimes used in this study were provided by Bras Factory in Kirikkale, Turkey. One slime had been roasted at 400°C; the other slime had not been roasted but had been dried at 100°C. Roasting converted the selenium in the anode slime to selenite; selenium in the unroasted slime was selenide. The analyses for key elements in the two anode slimes are given in Table 1.

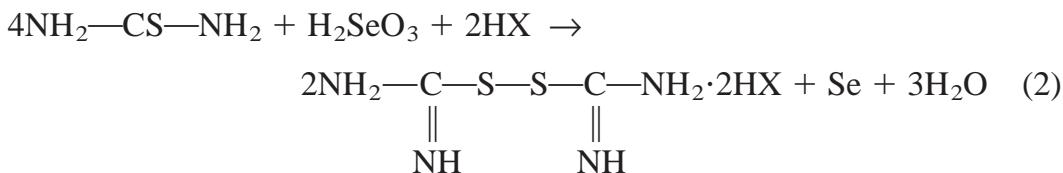
Analyses for tellurium and selenium were carried out gravimetrically (9) while those for copper, gold, and silver were made with an Atomic Absorption Spectrophotometer (Varian Tectron 1200 Model). Copper concentrations were also determined iodometrically (10). Free thiourea concentrations were determined by titration with 0.05 M $\text{Hg}(\text{NO}_3)_2$, using a diphenylcarbazide indicator (11).

Copper leaching was carried out under pressure in an autoclave with 1.8 L internal volume and temperature controlled with a thermostat (NEL-TS 1351) using a Ni-Cr-Ni thermocouple. Thiourea leaching experiments were carried out in a jacketed reactor with 250 mL internal volume and monitored with a pH meter (NEL-890). Constant temperature operations were maintained with a thermostat (Frigomix 1495).

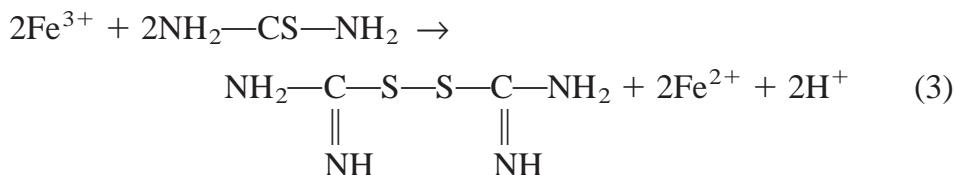
TABLE 1
Analysis Results of Anodes Slimes


Samples	Composition, % (w)				
	Cu	Se	Te	Ag	Au
Crude anode slime	28.0	15.0	2.1	7.9	0.37
Roasted anode slime	47.0	13.5	0.8	3.5	0.24

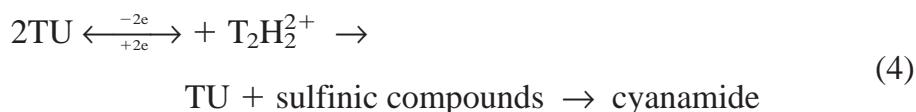
RESULTS AND DISCUSSION


Removal of Copper, Silver, and Gold

The first step in this approach was to remove the copper from the anode slime [a mixture of roasted (CuSeO_3) and unroasted (CuSe) slimes] by dissolution with sulfuric acid according to (12):



The dissolution was carried out for 1 hour under 6 atm N_2 pressure at 350°C. At the end of the experiment the dissolved copper was removed and the residue (decopperized anode slime) was washed with deionized water. This removed 99% of the copper; silver and selenium were not dissolved. Decopperized anode slime was then dried at 110°C and ground to sizes less than 100 mesh.


The decopperized anode slime was leached with a thiourea solution accompanied with an oxidant; several oxidants were tested. For instance, SeO_2 was accompanied with an oxidant; several oxidants were tested. SeO_2 oxidizes by the reaction

but only 4% of the gold and 8% of the silver was extracted, and the extraction of silver actually decreased as the amount of SeO_2 increased. Fe^{3+} was also tested as the oxidant using solutions with 5 and 10 g/L of iron. The 5 g/L solutions leached 48% of the gold and 15% of the silver, but when the solution with 10 g/L of iron was used, only 2% of silver and none of the gold were leached. The decrease in gold and silver leaching with the higher iron concentration was caused by oxidation of the formamidine disulfide by the reaction

The oxidation product is not stable in dilute acid solutions but decomposes to form sulfur, cyanamide, and thiourea (TU) (8):

The first oxidation product of thiourea is formamidine disulfide (T_2 or $T_2H_2^{2+}$) in acid solutions by a reversible reaction. In an irreversible step, $T_2H_2^{2+}$ disproportionates to yield thiourea and an unidentified sulfinic compound which, in turn, decomposes irreversibly to cyanamide and elemental sulfur (13). The elemental sulfur decreases the gold leaching rate by passivating the gold surface and decreases the silver leaching rate by the formation of insoluble Ag_2S (14):

Thus, these results show that the extraction of gold and silver could not be completed by oxidation alone. Instead, the selenium and tellurium should be extracted first using Na_2SO_3 and Na_2S solutions. This removes 80% of the selenium and 97% of the tellurium (15).

The residual selenium was only that associated with silver in the form of Ag_2Se , and silver was either in the form of Ag_2Se or Ag_2S . The residue was then roasted for 4 hours at $700^{\circ}C$ to remove the remaining selenium and sulfide (16). When the roasted sample was leached immediately with thiourea, only 35% of the gold and 10% of the silver were extracted.

But if the roasted samples were leached first with concentrated sulfuric acid in an autoclave at $350^{\circ}C$ under 8 atm oxygen pressure, and then with 0.1 M sulfuric acid and 3 M NH_3 , most of the silver was dissolved. This is shown in Table 2.

After drying at $110^{\circ}C$, the desilverized samples contained 3.08% Au, 0.9% Ag, 0.2% Se, and 0.1% Te. Leaching this material with thiourea (with and without Fe^{3+} oxidant) produced up to 60.4 and 75.0% dissolution of gold and silver, respectively (Fig. 1). The amount of gold and silver leached without Fe^{3+} oxidant is illustrated in Fig. 2. The higher extraction yields were obtained with the Fe^{3+} oxidant (Figs. 2-4). However, the oxidant also degraded

TABLE 2
The Reaction of the Sample with H_2SO_4 at Autoclave Conditions

Equivalent amount	Volume (mL)	Amount of silver passed into solution (%)		
		0.1 M H_2SO_4	3 M NH_3	Concentrated HNO_3
1.0	0.25	82.1	17.7	0.2
1.5	0.375	75.2	24.7	0.1
2.0	0.50	70.4	29.3	0.3
2.5	0.625	65.0	34.8	0.2
3.0	0.75	60.8	39.1	0.1
4.0	1.00	57.2	42.6	0.2
5.0	1.25	60.2	39.6	0.2

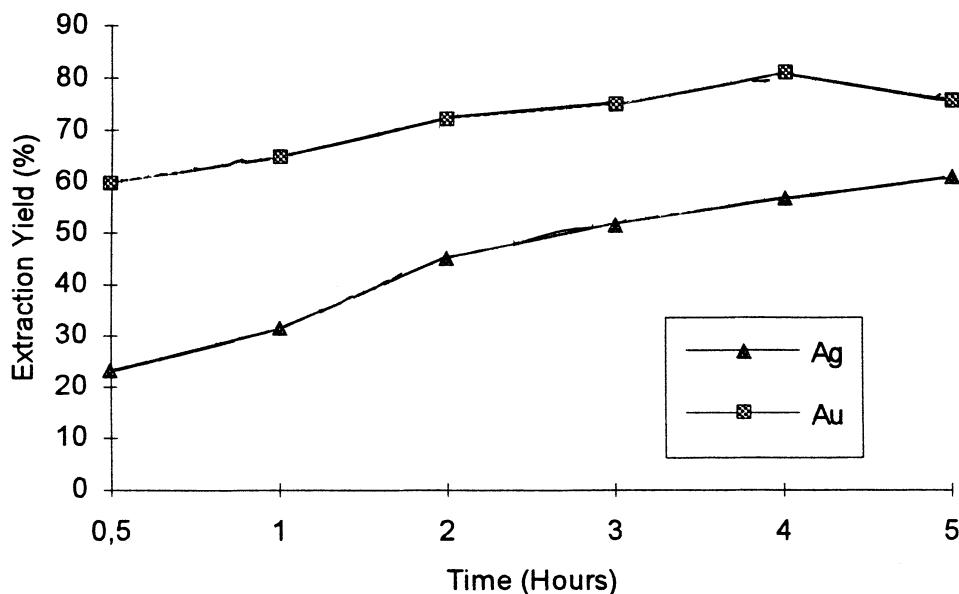


FIG. 1 Leaching of desilverized sample with thiourea solution. Experimental conditions: amount of sample, 1.4373 g; volume of extraction solution, 250 mL; concentration of thiourea solution, 10 g/L; pH, 1.0; temperature, 30°C.

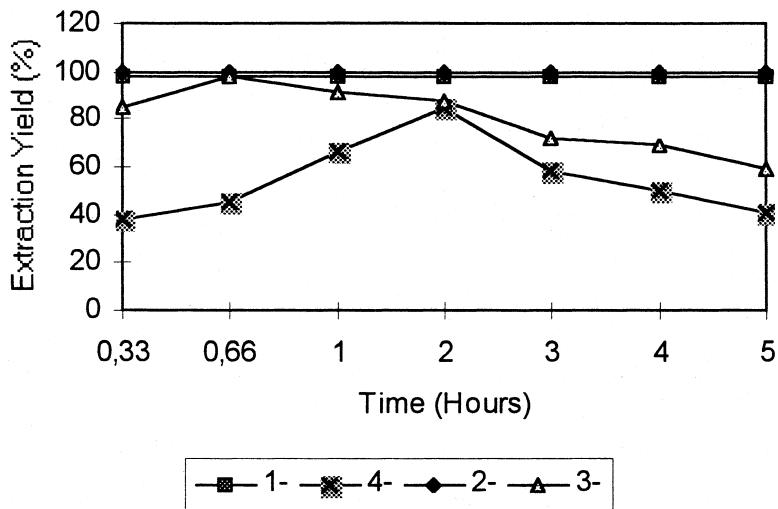


FIG. 2 Effect of temperature on leaching of gold and silver extraction. Experimental conditions: amount of sample, 1.4708 g; volume of extraction solution, 250 mL; concentration of thiourea solution, 10 g/L; amount of Fe^{3+} , 2.5 g/L; pH, 1; temperature, 30°C and 40°C. 1: 30°C Au; 2: 40°C Au; 3: 40°C Ag; 4: 30°C Ag.

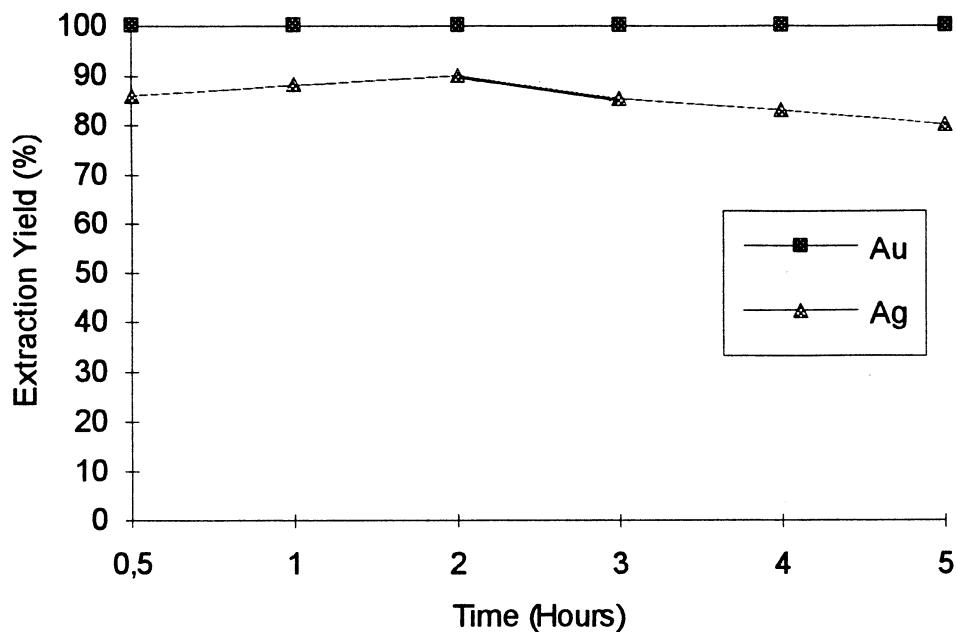


FIG. 3 Leaching of desilverized sample with thiourea solution. Experimental conditions: amount of sample, 1.5993 g; volume of extraction solution, 250 mL; concentration of thiourea solution, 10 g/L; amount of Fe^{3+} , 5 g/L; pH, 1.0; temperature, 30°C.

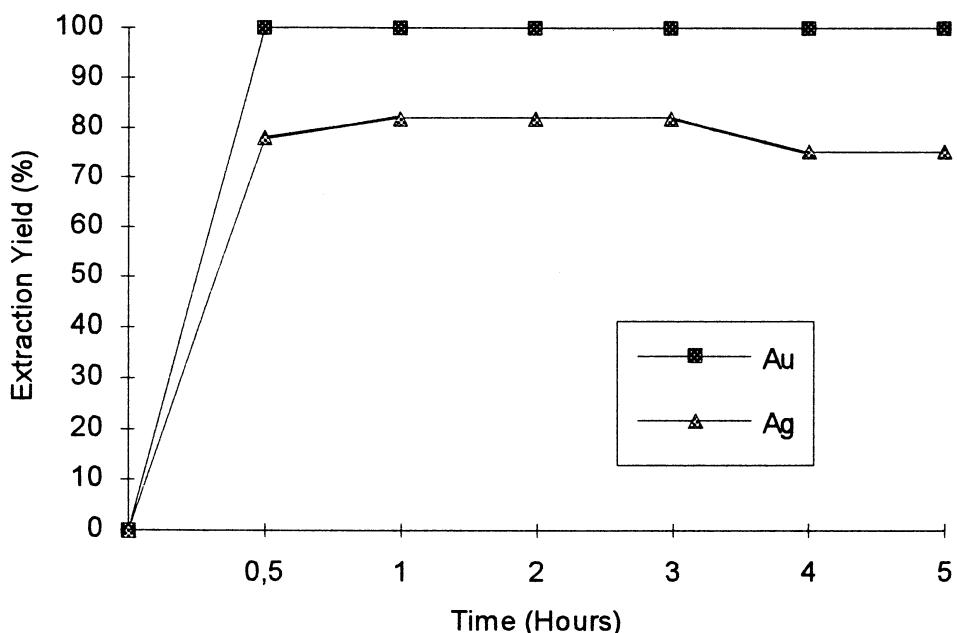


FIG. 4 Leaching of desilverized sample with thiourea solution. Experimental conditions: amount of sample, 1.4084 g; volume of extraction solution, 250 mL; concentration of thiourea solution, 10 g/L; amount of Fe^{3+} , 7.5 g/L; pH, 1.0; temperature, 30°C.

TABLE 3
Influence of Fe^{3+} Concentration on Extraction of Gold and Silver

Concentration of Fe^{3+} (g/L)	Extraction yield, %		Degraded thiourea (%)
	Au	Ag	
0.00	41.5	72.9	0.1
1.25	97.8	88.2	14.4
2.50	99.9	90.2	21.3
5.00	99.9	85.6	63.4
7.50	99.9	83.0	97.8

the thiourea, and the degree of degradation is shown in Table 3 and Fig. 5. As the concentration of the oxidant is increased, the degradation also increases and reduces the silver leaching slightly at Fe^{3+} concentrations above 2.5 g/L. Leaching of gold is not affected significantly by the oxidant concentration over this concentration range (Fig. 5).

The effects of temperature on leaching are also illustrated in Fig. 2. Gold leaching is very high for both temperatures tested, but silver leaching is notably better at 40°C than at 30°C. The variation of the leaching efficiency for the remaining silver with time can be attributed to degradation of the thiourea and the subsequent formation of insoluble Ag_2S . The effect of the solid/liquid

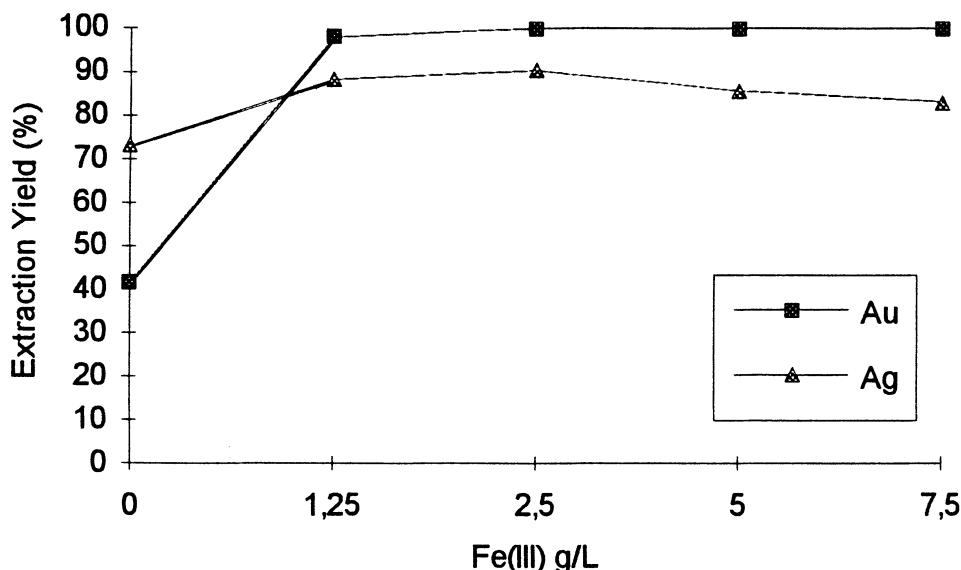


FIG. 5 Influence of Fe^{3+} on the extraction of gold and silver. Experimental conditions: amount of sample, 1.5000 g; volume of extraction solution, 250 mL; concentration of thiourea solution, 10 g/L; pH, 1, extraction time, 2 hours; temperature, 30°C.

TABLE 4
Effect of Solid/Liquid Ratio on Extraction
Yields of Gold and Silver

Solid/liquid ratio	Extraction yield (%)	
	Au	Ag
1:10	62.9	40.9
1:20	94.5	49.0
1:30	99.6	57.2
1:40	99.6	62.3
1:50	99.6	76.6
1:60	99.6	80.3

ratio on leaching efficiency is shown in Table 4. The leaching efficiency increases with decreasing solid/liquid ratio over the entire range tested.

DISCUSSION

In this study the recovery of copper, selenium, tellurium, silver, and gold in anode slime takes place in separate steps. For extractability of gold with thiourea, it is necessary first to remove copper, selenium, tellurium, and silver from the anode slime. Following removal of these elements, the gold (and the remaining silver residue) can be extracted in high yields by leaching with thiourea solutions. With this method it may be possible to collect copper, selenium, tellurium, silver, and gold in separate phases and purify them more easily. No other process is needed to separate gold and silver from each other after thiourea extraction because the gold and most of the silver are recovered in different steps.

REFERENCES

1. R. B. Bahappu, "Advances in Hydrometallurgical Extraction of Precious Metals," in *1st International Mineral Processing Symposium, Ege University Ataturk Cultural Centre, Izmir-Turkey, Vol. 1*, 1986, pp. 435-456.
2. S. Tataru, "Dissolution of Gold in Thiourea Solution," *Rev. Roum. Chim.*, 13, 891 (1968); *Chem. Abstr.*, 69, 100037k.
3. T. Groenewald, "Dissolution of Gold in Acidic Solutions of Thiourea," *Hydrometallurgy*, 1, 277-290 (1976).
4. G. Deshenes and E. Ghali, "Leaching of Gold from Chalcopryte Concentrate by Thiourea," *Ibid.*, 20, 179-202 (1988).
5. R. J. Hisshian and C. G. Waller, "Recovering Gold with Thiourea," *Min. Mag.*, pp. 237-243 (September 1984).

6. S. Goto, O. Ogawa, I. Asakura, and S. Nakamura, "Leaching of Gold and Silver from Ore with Thiourea in Sulfuric Acid Solution," *Nippon Kogyo Kaishi*, 101(1164), (1985); *Chem. Abstr.*, 105, 195019e.
7. P. Vodvarka, "Leaching Tests Using Thiourea," *Fiz-Khim. Probl. Min.*, 19, 275–281 (1987).
8. I. H. Gundiler and H. J. Huyhua, "Thiourea Leaching of Gold and Silver," in *1st International Mining Processing Symposium*, Ege University, Ataturk Cultural Centre, Izmir-Turkey, Vol. 1, 1986, pp. 457–470.
9. B. J. Shalton, "Determination of Ag, Se, Te, Sb, Sn, Pb and As in Anode Slags," *National Republic of South Africa, Report 1771*, 1975, 12 pp.
10. A. I. Vogel, *Text Book of Quantitative Inorganic Chemistry*, 3rd ed., Longman, London, 1960, p. 508.
11. J. C. Huyhua and I. H. Gundiler, "Recovery of Gold and Silver from Acidic Thiourea Solutions," in *1st International Mining Processing Symposium*, Ege University, Ataturk Cultural Centre, Izmir-Turkey, Vol. 1, 1986, pp. 471–480.
12. R. Ziyadanogullari and O. Yavuz, "Recovery of Selenium and Tellurium from Anode Slime," *Doga Tr. J. Chem.*, 14, 165–172 (1990).
13. R. C. Shulze, "New Aspect in Thiourea Leaching of Precious Metals," *J. Met.*, 6, 62–65 (1984).
14. I. M. Kolthoff and P. J. Elving (Eds.), *Treatise on Analytical Chemistry*, Part II, Vol. 15, Wiley, New York, NY, 1966, p. 107.
15. D. M. Chizhikov and V. P. Shchastlivyi, *Tellurium and Tellurides*, Collect's Publishers, London, 1970, p. 66.
16. I. Fujimura and A. Katai, *Selenium Recovery from Copper Electrolysis Slime at Mitsubishi Osaka Refinery* (TMS paper A82-12), TMS–AIME, Warrendale, PA, 1982.

Received by editor December 20, 1995

First revision received March 2, 1997

Second revision received February 1999

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100100147>